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Why Do Channel Estimation?

e Relatively few papers have focused on the fundamental
process of characterizing the underwater acoustic
channel

e Thereis no typical underwater channel

e |s anecessary step for the design of a successful
communication system

e Numerous channel measurements are required to
build up a database of underwater environments for
more realistic network simulations

Brian Borowski — Very Shallow Water Acoustic Channel Characterization — OCEANS ‘09 October 29, 2009



STEVENS

Experiment : e

Field Test Details

e Location: Hudson River estuary
e Date: August 21, 2008
e Depth:3m
e Distances: 200 m and 505 m
e Associated Equipment:
— NI USB-6221 DAQ for transmitting (200 ksamples/sec)
— NI PCI-6123 DAQ for recording (200 ksamples/sec)
— ITC-6050C hydrophones, custom emitter
e Signals

— Comb signal containing 5 sinusoidal components — 35, 45, 60, 75, and
85 kHz — for 1 minute

— 50-ms linear frequency modulated (LFM) chirp signal spanning 20-100
kHz, repeated for 30 seconds
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Experiment e

Sound Velocity Profile

Medwin’s expression: 0<T<35°C
_ _ i 0<5<45psu
c=1449.2 + 4.6T—5.5x 10272 + 2.9 x 10473 + 02D <1000 m
(1.34 — 102T)(S-35) + 1.6 x 102D
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Ambient Noise

Power Spectral Density

e Recorded for 30 seconds O =
before emitting test signals S T T N

e Power spectral density (PSD)
of noise was estimated via a
conventional periodogram
technique based on a 256- ol
point FFT together with a 0 I O O O O O O O

Hanning window and no BT

ove r|a p PSD of ambient noise in Hudson River estuary

Magnitude (dB)
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Time-Variant Impulse Response

e Using the wide-sense stationary uncorrelated scattering (WSSUS)
channel model,

— The 50-ms chirp signals were recorded 1 meter from the emitter and
either 200 or 505 meters away (depending on the test)

— The received signal and 1-meter reference signal were run through a 10th
order high-pass Butterworth filter at 20 kHz to eliminate out-of-band
noise

— One chirp was extracted from the 1-meter reference signal, accurate to
the sample

— The imaginary part of the reference chirp signal was obtained via the
Hilbert transform

— The received signal was cross-correlated with the complex conjugate of
the reference chirp signal
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Time-Variant Impulse Response

Impulse Response cft; ) Impulse Response cft; §)
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Successive time-variant impulse Successive time-variant impulse
response estimates at 505m response estimates at 200m
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Scattering Function
* Gives the average power
output of the channel as a >
function of time delay T and .

Scattering function at 505m

Doppler frequency A

ttttttttt g Function

* Isthe basis for computing T D A
the remainder of the R
channel characterization
functions
Sc (T; /1) — f AC (T, &t)e_jznﬂﬂtdﬁt ] el (] o (7] Frequency 2

Scattering function at 200m
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Multipath Intensity Profile

* P(t) gives the average power

Multipath Intensity Profile

output as a function of time
delay T

e Computed by summing the
power levels over the A values o

-1 u] 1 2 3 4 5

[t] Delay (ms)
P(7) = f S. (; 1)dA Multipath intensity profile at 505m
Multipath Intensity Profile
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Multipath intensity profile at 200m
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Spaced-Frequency Correlatlon Functlon

qu ncy Correlation Functio

 Fourier transform of the MIP

e |ndicates the coherence
bandwidth of the channel, a
statistical measure of the i *
range of frequencies over B
which the channel passes all Spaced-frequency correlation function at 505m
spectral components with —

approximately equal gain and
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Spaced-frequency correlation function at 200m
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Doppler Power Spectrum

09r

 Provides the signal intensity as

Analysis

a function of the Doppler

frequency A

e Computed by summing the
power of spectral components
of the scattering function over

the time de

P(A) =

ay T

Jr S.(t; Ddr

Overall Doppler Shift and Spread (Hz)

Shift Spread
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Spaced-Time Correlation Function

Spaced -Tirne Correlation Function

e Fourier transform of the
Doppler power spectrum

e Provides the channel’s
coherence time, a
measure of the expected A VAAYAVAY AR AYAAVATAY)
t|me durat|on over Wh]Ch Spaced-time correlation function at 505m
the channel’s response is | .
essentially invariant
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Fading Characteristics

Fading Envelope of 60 kHz Sinusoid o Cumulative Distribution of Sinusoids
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Distribution Fitting

e Maximum likelihood estimation was
used to fit the data to the Rayleigh,
Rice, and Nakagami-m (as well as
other less likely) distributions

e Goodness of fit was tested with three
different metrics — Kullback-Leibler
divergence, Bhattacharyya distance,
and a metric based on the
Bhattacharyya coefficient (Comaniciu,

Ramesh, and Meer)

e 200m => Ricean fading
e 505m => Nakagami-m fading
(m = 0.89, worse than Rayleigh fading)
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Signal Level

PDF of measuremé!nLics and fits at 505m

Probabiity Distribution Function
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PDF of measurements and fits at 200m
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Implications

Implications for Communication

(Time domain) If T, > T, the channel exhibits frequency-selective
fading, which results in channel-induced ISI

— At 200m, T, = 0.1850 ms => 5400 symbols per second
— At 505m, T, = 0.4000 ms => 2500 symbols per second

(Frequency domain) If W > f, where W is the bandwidth required
for modulation and f is the coherence bandwidth, the channel
imposes frequency-selective degradation

(Time domain) If T_ > T, the channel exhibits slow fading

— In the Hudson, the -3dB coherence time is 50ms, which is most likely
significantly longer than T, => slow fading channel

(Frequency domain) If W > f,, the channel is referred to as slow
fading

Harsh condition over long links => deploy multi-hop network
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Summary

e LFM chirp signals and a comb signal were
emitted during the experiment

e Environmental conditions were recorded

 Impulse response estimates were used to
derive channel characterization functions

e Various distributions were fitted to amplitude
fluctuations
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