The Softwater Modem: A Software Modem for **Underwater Acoustic Communication**

Brian Borowski and Dan Duchamp, *Department of Computer Science*

PURPOSE

- Low cost underwater acoustic modem fully implemented in software
- Easy deployment of applications written with sockets

FEATURES

- Uses sound card of PC
- Supports binary and 4-FSK (frequency shift keying) modulation
- User-adjustable parameters, including
 - Bit rate
 - Carrier frequency
 - Detection threshold
- Exploits LFM (linear frequency modulated) chirp signal for frame synchronization and channel estimation
- Can use Levinson-Durbin matrix inversion for equalization of slowly varying channels
- Employs Reed-Solomon codes for error correction

SYSTEM ARCHITECTURE

- Highest layer is user space application that utilizes TCP or UDP
- Lowest layer is Java application that implements functionality of acoustic modem
- Middle layer employs Linux TUN device for passing IP datagrams between network application and Java modem

MODEM PROCESSING BLOCKS

FRAME FORMAT

LFM Chirp – used for frame synchronization and channel estimation; spans frequency band of data modulation **Guard Time** – silence to allow all multipath components to dissipate

Frame Header – includes 16-bit CRC and 16-bit length fields

SIGNAL PROCESSING

Searching for packets and buffering samples (left)

PERFORMANCE

- Measured with JRat
- Each frame consisted of a 4-byte frame header, 16 parity bytes, and 128 bytes of payload, for a total of 1184 bits
- Frames transmitted at 1 kbps

Processing Time of Subroutines (ms)

	Desktop	Laptop T60p	Laptop T500
	Intel Q6600	Intel T7200	Intel P8400
Transmit			
a. Modulate	8.00	12.00	13.40
b. Encode Reed-Solomon	9.33	74.40	82.60
Sum (a:b)	17.33	86.40	96.00
Frame duration	1244.00	1244.00	1244.00
Comp Time/Signal Length	1.39 %	6.95 %	7.72 %
Receive			
c. Cross-correlation	2.36	5.03	4.46
Block length	85.33	85.33	85.33
Comp Time/Signal Length	2.77%	5.89%	5.23%
Demodulate			
d. Levinson-Durbin	3.40	3.80	5.33
e. FFT convolution	29.80	65.00	43.83
f. Bandpass filtering	2.60	3.60	4.16
g. Envelope detection	61.60	117.60	84.50
h. Normalizer	1.60	3.70	1.50
i. Comparator	0.40	2.00	0.33
j. Bit Decision	0.40	1.60	0.50
k. Decode Reed-Solomon	1.33	21.40	17.40
I. Write 2 wav files	2.00	3.40	2.60
m. Write IR data to csv file	16.33	55.40	36.00
Sum (d:m)	119.46	277.50	196.15
Frame duration	1244.00	1244.00	1244.00
Comp Time/Signal Length	9.60 %	22.31%	15.77%

• Estimated BER (bit error rate) versus various signal levels in AWGN (additive white Gaussian noise) channel

