

Short Paper: The Softwater Modem – A Software Modem for Underwater Acoustic Communication

Brian Borowski and Dan Duchamp Department of Computer Science Stevens Institute of Technology Castle Point on Hudson, Hoboken, NJ 07030 {bborowsk, djd}@cs.stevens.edu

- Introduction
- Architecture
 - System
 - Modem
- Signal Processing
- Computational Performance
- Summary and Future Work

- Goals
 - Easy deployment of applications written with sockets
 - Extensible platform for real-time channel estimation and communication
 - Low cost underwater acoustic modem fully implemented in software

• Features

- Uses sound card of PC
- Supports binary and 4-FSK (frequency shift keying) modulation
- User-adjustable parameters, including
 - o Bit rate
 - o Carrier frequency
 - Detection threshold
- Exploits a per-frame LFM (linear frequency modulated) chirp signal for synchronization and channel estimation
- Can use Levinson-Durbin matrix inversion for equalization of slowly varying channels (zero forcing equalizer)
- Can employ Reed-Solomon codes for error correction
- Incoming frames and impulse response estimates can be saved to .wav and .csv files for offline analysis; SNR is computed and logged

- Includes 3 levels of user space applications
 - Network app (TCP/UDP, any language)
 - Acoustic modem (Java)
 - Tunnel relay app for passing IP datagrams from the network app to and from the software modem (C)

Transmit and receive

- Each stage is a separate thread
- Threads communicate by placing the resulting item on interconnecting threadsafe queues

Modem Architecture

Institute of Technology

Signal Processing

WUWNet'09, Berkeley, CA

November 3, 2009

Borowski/Duchamp – The Softwater Modem

- Audio block length > length of LFM chirp preceding each frame
- Modulation index is 1, so that tones are separated by the symbol rate in Hz
- Second-order IIR filters are used
 - Best performance is obtained when the product BT is close to 1.0, where B is the -3dB bandwidth in Hz and T is the duration of a symbol in seconds [Watkins-Johnson Company, tech-notes]

- CHIRP_MS = <integer>
- BASE_FREQUENCY_RX / TX = <integer>
- **FULL_DUPLEX** = <TRUE/FALSE>
- **GUARD_MS** = <integer>
- **IMPULSE_RISE_MS** = <decimal>
- **INVERSE_FILTER** = <TRUE/FALSE>
- NUMBER_OF_CARRIERS = <2/4>
- **PARITY_BYTES** = <integer>
- **PAYLOAD_SIZE_IN_BYTES** = <integer>
- **SYMBOLS_PER_SECOND** = <integer>
- **THRESHOLD** = <integer>

November 3, 2009

Borowski/Duchamp - The Softwater Modem

9

Institute of Technology

Computational Performance

- Measured with JRat
- Each frame had
 - 50 ms LFM chirp
 - 10 ms guard time
 - 4-byte frame header
 - 16 parity bytes
 - 128 bytes of payload (including other headers)
 - Total of 1184 bits
- Frames transmitted at 1 kbps

Processing	Time	of Subroutines	(ms))
------------	------	----------------	------	---

_				
	Desktop	Laptop T60p	Laptop T500	
	Intel Q6600	Intel T7200	Intel P8400	
Transmit				
a. Modulate	8.00	12.00	13.40	
b. Encode Reed-Solomon	9.33	74.40	82.60	
Sum (a:b)	17.33	86.40	96.00	
Frame duration	1244.00	1244.00	1244.00	
Comp Time/Signal Length	1.39 %	6.95 %	7.72 %	
Receive				
c. Cross-correlation	2.36	5.03	4.46	
Block length	85.33	85.33	85.33	
Comp Time/Signal Length	2.77%	5.89%	5.23%	
Demodulate				
d. Levinson-Durbin	3.40	3.80	5.33	
e. FFT convolution	29.80	65.00	43.83	
f. Bandpass filtering	2.60	3.60	4.16	
g. Envelope detection	61.60	117.60	84.50	
h. Normalizer	1.60	3.70	1.50	
i. Comparator	0.40	2.00	0.33	
j. Bit Decision	0.40	1.60	0.50	
k. Decode Reed-Solomon	1.33	21.40	17.40	
l. Write 2 wav files	2.00	3.40	2.60	
m. Write IR data to csv file	16.33	55.40	36.00	
Sum (d:m)	119.46	277.50	196.15	
Frame duration	1244.00	1244.00	1244.00	
Comp Time/Signal Length	9.60 %	22.31%	15.77%	

Summary and Future Work

• Summary

- Implemented open source acoustic modem
- Modem offers numerous configuration parameters
- Performs channel characterization and records data
- Future Work
 - Add other modulation techniques
 - Convert to LMS-based adaptive DFE
 - Deploy a pair of modems for long-term channel characterization and communication experiments